Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Int Health ; 2023 Feb 15.
Article in English | MEDLINE | ID: covidwho-2244712

ABSTRACT

BACKGROUND: This study assessed the association between admission kidney function and the duration of hospitalization in triple-vaccinated coronavirus disease 2019 (COVID-19) inpatients during the omicron surge in Larissa, central Greece. METHODS: Regression analysis was used to estimate the effect of kidney function biomarkers on hospital length of stay (LoS) within a dataset from a cohort of 51 subjects. RESULTS: Sex- and age-adjusted admission serum creatinine was associated with hospital LoS (p=0.034). CONCLUSIONS: Serum creatinine concentration on admission should be further evaluated as a possible clinical predictor of hospital LoS among triple-vaccinated COVID-19 inpatients both at the country and global level.

2.
J Pers Med ; 12(4)2022 Apr 15.
Article in English | MEDLINE | ID: covidwho-1792627

ABSTRACT

BACKGROUND: SARS-CoV-2 vaccines have shown high efficacy in protecting against COVID-19, although the determinants of vaccine effectiveness and breakthrough rates are yet to be determined. We aimed at investigating several factors affecting the SARS-CoV-2 IgG Spike (S) antibody responses on admission and clinical outcomes of COVID-19 disease in fully vaccinated, hospitalized patients. METHODS: 102 subjects were enrolled in the study. Blood serum samples were collected from each patient upon admission for the semiquantitative determination of the SARS-CoV-2 IgG S levels with lateral flow assays. Factors influencing vaccine responses were documented. RESULTS: 27 subjects had a negative antibody test upon hospital admission. Out of the 102 patients admitted to the hospital, 88 were discharged and 14 died. Both the absence of anti-S SARS-CoV-2 antibodies and poor clinical outcomes of COVID-19 disease were associated with older age, lower Ct values, and a shorter period between symptom onset and hospital admission. Ct values and time between symptom onset and hospitalization were independently associated with SARS-CoV-2 IgG S responses upon admission. The PaO2/FiO2 ratio was identified as an independent predictor of in-hospital mortality. CONCLUSIONS: Host- and disease-associated factors can predict SARS-CoV-2 IgG S responses and mortality in hospitalized patients with breakthrough SARS-CoV-2 Infection.

6.
Can Respir J ; 2021: 6590528, 2021.
Article in English | MEDLINE | ID: covidwho-1450631

ABSTRACT

Background: The direct effect of SARS-CoV-2 on the lungs results in increased hospitalization rates of patients with pneumonia. Severe COVID-19 patients often develop ARDS which is associated with poor prognosis. Assessing risk factors for COVID-19 severity is indispensable for implementing and evaluating therapeutic interventions. We investigated the temporal associations between the SARS-CoV-2 antigen (Ag), total Immunoglobulin (Ig) levels, and several laboratory parameters in hospitalized patients with varying degrees of COVID-19 severity. Methods: The SARS-CoV-2 nucleocapsid protein (NP) and total Ig Spike (S) protein-specific antibodies were determined for each patient with lateral flow assays through repeated sampling every two days. Hematological and biochemical parameters were evaluated at the same time points. Results: 40 Greek COVID-19 patients (31 males, 9 females) with a median age of 59.50 ± 16.21 years were enrolled in the study. The median time from symptom onset to hospitalization was 8.0 ± 4.19 days. A significant negative correlation was observed between the SARS-CoV-2 Ag and total Ig levels. The temporal correlation patterns of the SARS-CoV-2 NP Ag and anti-S total Ig levels with laboratory markers varied among patients with differing degrees of COVID-19 severity. Severe-critical cases had lower SARS-CoV-2 Ag and increased total Ig levels as compared to mild-moderate cases. Conclusions: Distinct temporal profiles of the SARS-CoV-2 NP Ag and anti-S total Ig levels may distinguish different groups of COVID-19 severity.


Subject(s)
Antigens, Viral/immunology , COVID-19/virology , Coronavirus Nucleocapsid Proteins/immunology , Immunoglobulins/immunology , Pandemics , SARS-CoV-2/immunology , Adult , Aged , Aged, 80 and over , COVID-19/epidemiology , COVID-19/immunology , Enzyme-Linked Immunosorbent Assay , Female , Follow-Up Studies , Greece/epidemiology , Humans , Male , Middle Aged , Prospective Studies
7.
Am J Physiol Lung Cell Mol Physiol ; 320(6): L1057-L1063, 2021 06 01.
Article in English | MEDLINE | ID: covidwho-1172083

ABSTRACT

Viroporins, integral viral membrane ion channel proteins, interact with host-cell proteins deregulating physiological processes and activating inflammasomes. Severity of COVID-19 might be associated with hyperinflammation, thus we aimed at the complete immunoinformatic analysis of the SARS-CoV-2 viroporin E, P0DTC4. We also identified the human proteins interacting with P0DTC4 and the enriched molecular functions of the corresponding genes. The complete sequence of P0DTC4 in FASTA format was processed in 10 databases relative to secondary and tertiary protein structure analyses and prediction of optimal vaccine epitopes. Three more databases were accessed for the retrieval and the molecular functional characterization of the P0DTC4 human interactors. The immunoinformatics analysis resulted in the identification of 4 discontinuous B-cell epitopes along with 1 linear B-cell epitope and 11 T-cell epitopes which were found to be antigenic, immunogenic, nonallergen, nontoxin, and unable to induce autoimmunity thus fulfilling prerequisites for vaccine design. The functional enrichment analysis showed that the predicted host interactors of P0DTC4 target the cellular acetylation network. Two of the identified host-cell proteins - BRD2 and BRD4 - have been shown to be promising targets for antiviral therapy. Thus, our findings have implications for COVID-19 therapy and indicate that viroporin E could serve as a promising vaccine target against SARS-CoV-2. Validation experiments are required to complement these in silico results.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Viroporin Proteins/immunology , Amino Acid Sequence , COVID-19/prevention & control , Cell Cycle Proteins/immunology , Computer Simulation , Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/immunology , Humans , Transcription Factors
SELECTION OF CITATIONS
SEARCH DETAIL